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I use an improved version of the two-step density-matrix renormalization group method to study ground-
state properties of the two-dimensional �2D� Heisenberg model on the checkerboard lattice. In this version, the
Hamiltonian is projected on a tensor product of two-leg ladders instead of chains. This allows investigations of
2D isotropic models. I show that this method can describe both the magnetically disordered and ordered
phases. The ground-state phases of the checkerboard model as J2 increases are �i� Néel with Q= �� ,��, �ii� a
valence-bond crystal �VBC� of plaquettes, �iii� Néel with Q= �� /2,��, and �iv� a VBC of crossed dimers. In
agreement with previous results, I find that at the isotropic point J2=J1, the ground state is made of weakly
interacting plaquettes with a large gap ��0.67J1 to triplet excitations. The same approach is also applied to
the J1-J2 model. There is no evidence of a columnar dimer phase in the highly frustrated regime.

DOI: 10.1103/PhysRevB.77.052408 PACS number�s�: 75.10.Jm

Frustration-induced magnetically disordered phases in
two dimensions have recently attracted substantial interest.1

Frustrated magnets are known to display unconventional
ground states with, in some cases, a large set of low-lying
degenerate singlet excitations that are still not well under-
stood. Among models of frustrated systems, the Heisenberg
model on the checkerboard lattice �HMCL� has recently been
intensively studied by various techniques.2–8 This model is
seen as a first step in the investigation of the three-
dimensional pyrochlore model. The emerging picture is that
at the isotropic point �J1=J2�, the HMCL spontaneously
breaks the lattice’s translational symmetry. The ground state
is a singlet made of a collection of weakly coupled
plaquettes with a large gap, ��0.7J1, to triplet excitations.
Away from the isotropic point, the situation is less clear.
There is no single method which can capture the full phase
diagram. Another important model which has remained so
far very controversial is the J1-J2 model.1

In this Brief Report, I introduce an improved version of
the two-step density-matrix renormalization group9,10 �TSD-
MRG� which, as I will show, is very convenient in the study
of the HMCL and other two-dimensional �2D� frustrated
models. This version is based on using the two-leg ladder,
instead of chains, as the starting point to build the 2D lattice.
The main insight in using the two-leg ladder to construct the
2D lattice comes from large N predictions11 that frustration
often induces ground states in which the translational sym-
metry is broken. In the strong-coupling regime of the disor-
dered phase of S=1 /2 systems, the system is made of a
collection of singlets or plaquettes. This strong coupling re-
gime cannot be described starting from independent chains
which are gapless. Starting from a single chain, small trans-
verse perturbations can yield a gap within the TSDMRG, but
this gap is often small and it is difficult to obtain reliable
extrapolations. The two-leg ladder does not present this
problem. It does already present a large gap ��0.5 even in
the absence of frustration. Coupled ladders naturally evolve
toward the 2D Néel state as the number of legs increases.
Hence, in principle, disordered and ordered phases could be
described within a two-leg ladder version of the TSDMRG.

This suggests that the two-leg ladder is a more natural start-
ing point to describe ground-state phases of 2D antiferro-
magnets than the single chain.

Additional insights into this idea came from my compara-
tive study of coupled chains with half-integer and integer
spins.12 In Ref. 12, when starting from single chains, I found
that although chains with S=1 display the Haldane gap,
��0.4, they converge much faster to the Néel state than
those with S=1 /2. Furthermore, when a frustration-induced
disordered phase is present, it can be much more easily
found in the case S=1. Hence, following the equivalence
between the two-leg ladder and the Haldane spin chain, sug-
gested by the Affleck-Kennedy-Lieb-Tasaki construction,13 it
would be better to adopt the two-leg ladder as the building
block for two-dimensional lattices.

I will now illustrate this idea in the cases of the HMCL
and the J1-J2 model. Following the usual notation, the
Hamiltonian for these models is given by

H = J1�
�i,j�

SiS j + J2�
�i,j�

SiS j , �1�

where �i , j� represents nearest-neighbor sites and �i , j� stand
for next-nearest neighbors on every other plaquette for the
HMCL and on every plaquette for the J1-J2 model. J1 is set
as the unit energy.

The TSDMRG with ladders is similar to the method with
chains. So I refer the reader to Refs. 9 and 10 for a complete
exposition of the algorithm. Here, I will discuss only briefly
the main points of the algorithm. I start by dividing the 2D
lattice into two-leg ladders; the Hamiltonian �1� is written as

H = �
ladders

Hladder + Hint, �2�

where Hladder is the Hamiltonian of a single two-leg ladder,
and Hint contains the interladder part. In the first step of the
method, the usual density-matrix renormalization group
�DMRG� method is applied to generate a low-energy Hamil-
tonian of an isolated ladder of Nx sites, keeping m1 states.
Then m2 low-lying states of the superblock states, the corre-
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sponding energies, and all the local spin operators are re-
tained. These energies represent the renormalized low-energy
Hamiltonian of a single ladder. The Hamiltonian �2� is then
projected onto the tensor product basis of independent lad-
ders, �=�ladders�ladder, where �ladder is an eigenfunction of
Hladder. This yields an effective Hamiltonian, Hef f =H0+ H̃int,
where H0 is diagonal and its eigenfunction are the �’s.

The resulting effective coupled ladder problem, which is
one-dimensional �1D�, is studied again by the DMRG
method in the transverse direction. The TSDMRG, like the
original DMRG method, is variational. The subspace
spanned by the wave functions of the form � is a subspace
of the full Hilbert space of Hamiltonian �1�. Its convergence
depends on m1 and m2, and the error is given by max��1 ,�2�,
where �1 and �2 are the truncation errors in the first and
second, steps respectively. m2 fixes the energy bandwidth �E.
The method is accurate only when the interladder couplings
are small with respect to �E. In the present simulations,
�E�4. Since for the HMCL the interladder and intraladder
are of the same magnitude, in principle, this approach would
be plagued by the same deficiencies as the block renormal-
ization group method. However, if the starting point is cho-
sen so that the essential physics is already contained at the
level of the ladder, the effective strength of the interladder
couplings will be small even if the bare couplings are not.
This is particularly the case with frustrated models in which
the competing interactions largely cancel each other in the
strong frustration regime, yielding weakly coupled subclus-
ters.

I start by the analysis of the HMCL. The ground-state
properties of an isolated ladder can readily be obtained. I
keep up to m1=128 and Nx=16, and I target spin sectors
from Sz=0 to Sz= �4 and I use open boundary conditions
�OBCs�. The maximum error is �1=1	10−4. There is a gap
� for all values of J2 investigated between 0 and 2. The finite
size behavior of gaps for some typical values of J2 are shown
in Fig. 1. The case J2=0 reduces to the usual two-leg ladder
which has been widely studied in the literature.14 For J2=0,
��0.5. As J2 increases, � has a nonmonotonous behavior.
This suggests a rich structure which is revealed more clearly
by the analysis of the correlation functions. I computed the
following short-range correlation functions: the bond
strength along a leg Clu,c

= �Si,1Si+1,1�u,c for uncrossed �u�
and crossed �c� plaquettes, the diagonal correlation
Cdu,c

= �Si,1Si+1,2�u,c, and bond strength along the rungs
Cr= �Si,1Si,2�. Note that I have introduced a second index to
the local spin. These correlations are shown in Fig. 2. Four
regions can be identified: �i� Region I �rung dimers�:
0
J2
0.6, Clu,c

�0, Clu
�Clc

, Cdu,c
�0, Cr�0, and

	Cr	� 	Clu
	; the dominant spin-spin correlations are along the

rungs. The ground-state properties of the ladder in this region
are identical to those of the unfrustrated ladder �J2=0�. �ii�
Region II �plaquettes I�: 0.6
J2
1, Clu,c

�0, 	Clu
	� 	Clc

	,
Cdu,c

�0, Cr�0, and 	Cr	� 	Clu
	; the physics is dominated by

that of the isotropic point. At this point, the ground state is a
collection of weakly interacting uncrossed plaquettes.
Both Cdc

and Clc
vanish at J2=1. In this region, the local

spin configuration is the same on all the uncrossed plaquettes
as shown in Fig. 3�b� �iii� Region III �plaquettes II�:

1
J2
1.3, Clu
�0, Clc

�0, Cdu
�0, Cdc

�0, Cr�0, and
	Cr	� 	Clu

	; in this region, the ground state is again domi-
nated by uncrossed plaquettes, but now the local spin con-
figurations on two consecutive uncrossed plaquettes are im-
ages of one another by reflection with respect to a plane
passing through the middle of the crossed plaquette between
them. Region IV �crossed dimers�: 1.3
J2, Clu

�0, Cdc
�0,

Clc
=Cr=Cdu

�0, and 	Cr	� 	Clu
	; the ground state is domi-
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FIG. 1. �a� Spin gap of the HMCL two-leg ladder for J2=0
�circles�, 0.5 �squares�, 1 �diamonds�, 1.1 �triangles up�, and 2 �tri-
angles down�. �b� Ground-state energies as function of the system
size for a two-leg ladder for J2=1 �circles� and J2=2 �diamonds�,
and for the 2D lattice for J2=1 �squares� and J2=2 �triangle up�.
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FIG. 2. Short-range correlations of the HMCL Cl �circles�, Cr

�squares�, and Cd �diamonds� for the two-leg ladder for �a� un-
crossed and �b� crossed plaquettes as function of J2.
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nated by the crossed dimers on crossed plaquettes as shown
in Fig. 3�d�. The sketch of the spin structure corresponding to
each region is summarized in Fig. 3. Since I applied OBC,
for a given size, there are two possible ground states depend-
ing on the plaquette pattern: �a� ucu . . .ucu or �b� cuc . . .cuc.
In region I, the configurations �a� and �b� have nearly the
same energy. This is consistent with the fact that the transla-
tional symmetry is not broken. However, in regions II and
III, �a� has the lowest energy, since it has a larger number of
uncrossed plaquettes. By contrast, in region IV where dimer
order is dominant, it is �b� that has the lowest energy.

The 2D systems are obtained by applying the DMRG on
Hef f in the transverse direction. I studied systems of size
Nx	Ny =4	6, 8	10, 12	14, and 16	18. I kept up to
m2=128 and used OBC. Interladder interactions will have
very different effects depending on whether they correspond
to a magnetic regime or a disordered regime. I will first
consider their effects on region II, which includes the isotro-
pic point. The interladder interactions do not substantially
modify the ground state wave function of decoupled ladders.
Figure 1�b� shows that the ground-state energy and Fig. 4�a�
� are not very different from that of an isolated plaquette
displayed in Fig. 1�a�. Thus, in the vicinity of J2=1, inter-
ladder interactions do not strongly renormalize the properties
of an isolated ladder, which themselves are close to those of
an isolated plaquette. The extrapolated gap in Fig. 4�a� is
found to be �=0.67J1, which is in good agreement with the
prediction from exact diagonalization.6 The same conclusion
is seen in Fig. 1 for region IV, where the crossed-dimer
ground state found for the ladder is also the ground state of
the 2D lattice. In both cases, the wave function made of the
tensor product of the wave function of single two-leg ladders
is a good variational wave function for the 2D system. In
each case, the ground-state energy of the 2D system remains
very close to that of individual plaquettes �−0.5J1� or crossed
dimers �−0.375J2�. This can be explained as follows: when

ladders are brought together to build the 2D lattice, the domi-
nant local correlations are Clu

in region II and Cdc
in region

IV; during this process, magnetic energy cannot be gained
efficiently. For region II, this is because the two neighboring
plaquettes of an uncrossed plaquette in the direction of the
rungs involve frustrated bonds. Hence, the system prefers the
original configuration to avoid increasing its energy. For re-
gion IV, Cr is very small. The system cannot increase it when
the ladders are coupled, because the spins are already in-
volved in strong diagonal dimers. There is, however, the pos-
sibility of gaining magnetic energy by forming Néel order
along the direction of the diagonal bonds �J2 direction� as
suggested in Ref. 8. This is unlikely, however, because once
such a phase is reached, I do not see how the system could
go to crossed dimers at larger J2. The action of J1, which acts
as frustration in this regime, decreases as J2 increases.
Hence, once this hypothetical Néel phase along the J2 bonds
is reached, there is no obvious mechanism that could destroy
it as J2 increases to yield the crossed-dimer phase as sug-
gested in Ref. 8. Such a Néel phase would be favored only
when J2J1. I made rough calculations with J2=4 and 8,
and I found that the system remains in the crossed-dimer
phase. The situation is apparently identical to the J1-J2 chain
where the independent chains regime is only reached in the
infinite J2 limit.

The situation is very different for regions I and III. In
region I, the dominant local correlation is Cr; when the lad-
ders are brought together, magnetic energy can be gained by
an antiferromagnetic arrangement along the rungs. This
enhances the local antiferromagnetic order which exists
along the legs and ultimately leads to a Néel order with
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FIG. 3. The four phases of the HMCL two-leg ladder: �a� rung
dimers, �b� plaquette I, �c� plaquette II, and �d� crossed dimers.
Ground-state phases of the 2D checkerboard model as function of
J2. Note that the phase boundaries are rough estimates taken from
the phases of the two-leg ladder �e�.
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FIG. 4. �a� 2D gaps of the HMCL as function of the system size
J2=0 �circles�, 0.5 �squares�, 1 �diamonds�, 1.1 �triangles up�, and 2
�triangles down�. �b� Correlation function along the legs as function
of the distance for J2=1.25.
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Q= �� ,��. This is seen in the vanishing of the spin gap for
J2=0 and J2=0.5 shown in Fig. 4�a�. This is in agreement
with results for J2=0 from quantum Monte Carlo �QMC�
simulations15 and large S analysis.4 I find that the TSDMRG
ground-state energy −0.6011 at J2=0 is not in very good
agreement with the QMC result −0.6699 of Ref. 15. Despite
this discrepancy, the TSDMRG, is nevertheless, able to re-
produce the low-energy behavior of the ordered phase. This
is not, in fact, surprising. In the resonating, valence-bond
picture, the Néel state and its low-energy excitations can be
written as a linear combination of a tensor product of dimers.
The TSDMRG variational solution of Hamiltonian �1�,
which is a linear combination of the wave functions �, has
this form. A similar analysis also applies for region III. Clu

is
dominant in region II, but as seen in Fig. 2, Clu

has a mini-
mum at J2=1 and then increases. It becomes very close to Cr
when J2 enters region III. Hence, magnetic energy can be
gained again through the rungs. Since the structure along the
legs is not modified from Fig. 3�d�, the resulting wave vector
will be Q= �� /2,��. This is seen in Fig. 4 in the behavior of
the spin-spin correlation function Cl�i� along the legs. Cl�i�
displays a period of 4. The correlations between the rungs
�not shown� oscillate with qy =�. The state with
Q= �� ,� /2� are degenerate, as are the �� ,0� and �0,��
states in the J1-J2 model. Figure 3 presents a sketch of the
different ground-state phases of the HMCL as a function of
J2. I note that in Ref. 8, a very similar phase diagram was
suggested; the only difference with the TSDMRG phase dia-
gram is the wave vector of the Néel phase between the
plaquette and crossed-dimer phases.

I now apply the above analysis to the J1-J2 model. Previ-
ous studies1 have concluded that the model has three phases:
a Néel phase with Q= �� ,�� for J2
0.4J1, a disordered
phase, which is thought to be a columnar dimer phase, for
0.4J1
J2
0.6, and a Néel phase with Q= �� ,0� or
Q= �0,�� for J2�0.6J1. While the existence of the two mag-
netic phases is clearly established, there has not been any
convincing evidence of a disordered phase between them.
Indeed, recent two-step DMRG studies based on weakly
coupled chains9,10 suggest that this disordered phase does not
exist. In Fig. 5, I show the short-range spin-spin correlations
of the ladder, which show only two phases: the rung-singlet

phase with dominant antiferromagnetic Cr for J2
0.6J1, and
the haldane phase with dominant Cd and ferromagnetic Cr
for J2�0.6J1. These phases naturally evolve respectively to
the Néel phases with Q= �� ,�� and Q= �� ,0� in the 2D
systems. There is a small finite size dimerization in the vi-
cinity of the critical point. The maximum of dimerization
occurs at the point where Cr=0 and the 1D character is en-
hanced. This is suggestive of a finite size critical behavior,
not of a disordered phase. The absence of a disordered phase
is supported by the vanishing of � of the 2D system at
J2=0.5J1 as shown in Fig. 5.
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FIG. 5. �a� Short-range correlations in the J1-J2 model Cl for
two consecutive bonds �circle and stars�, Cr �squares�, and Cd �dia-
monds�. �b� 2D gap for J2=0.5J1.

BRIEF REPORTS PHYSICAL REVIEW B 77, 052408 �2008�

052408-4


